

LAB

APPLICATIONS

LAB simulation methods and Optical Proximity Correction in Lithography

Proximity Lithography

Proximity Lithography = Shadow Printing

Mask Aligner Source: Süss Microtech

Flat Panel Display Proximity Printer:

Source: Hitachi High Tech

Lithography Elements

Source

- Broadband wavelength emission
- Collimation and Tilt angles
- Shape

Mask

- Feature sizes
- Diffraction effects
- Type:
 - Transmission, Greyscale, Phase

Proximity gap

Resist and stack

- · Material optical properties
- Thicknesses
- Reflections

The Lithography Challenges: Optimisation

5

Simulation Settings

• LAB provides many settings to emulate multiple experimental conditions giving the tools to optimise an exposure process

Mask Parameter	Proximity Exposure			Proximity Exposure	
IncomingLayout V O Dark Field O Br	Mask Stack Tool Simulation Analysis La	abel/Comment	Proximity Exposure	Mask Stack Tool Simulation Analysis Label/Comment	
Layer(s) * Corner Rounding Parameters Corner Rounding Inner Radius [nm] 50 XMin [um] Y Min [um]	Stack Type Planar Type Material Thickness [um] T Resot AZI518 1 Substrate Si-crystalline	Proximity Exposure Mask Stack Tool Simulation Analysis I Spectrum Predefined Spectrum: User-Defined ↓ Wavelength [rm] Rel Weight Peak Width [rm] 265 2 5	Mask Stack Tool Simulation Analysis Grid X/Y [um] 0.2 Grid Z [um] 0.050000 Vertical range • Resist User defined	Cerial Image (intensity without stack, assuming air) Bulk Image (intensity with stack material) PAC Image (Photo-Active-Compound concentration) Reflectivity Analysis AZ1518 Dose Gap Matrix Dose to Size Reflectivity Swing Curve	
-15 -15		405 4 5 436 3 5		Dose Gap Matrix MEEP (Mask Error Enhancement Factor)	
			2 min [um] 0.000000	Dose Factor [-] 0.8, 1, 1.2	
		Exposure Dose [mJ/cm^2] 15	Z Averaging 0 V	Proximity Gap [um] 10,15,20,25,30,35	
	Insert Delete Impor	Polarization Scalar ~	Region Periodicity in X		
Define Metrology by:	Resist Comment	Illuminator	Basica Basic dicks in V		
Center, Orientation, TargetCD Type Center X [um] (Tilt X/Y [deg] 0.000000	Periodic O Non-periodic		
Line 0.000000 -0.00		Type Circular	Influence Range		
		Optics HR config A(LH 350)	Automatic O Manual		
		IFP			
Threshold [mJ/cm^2]: 0.500000					
Metrology position settings	Load resist optical data from database	Source File Name			
Bottom (%): 10.000000	AZ1518 Si-crystalline Use Post Apply Bake Model	Collimation Angle / 2.500000 Divergence [deg]			
Sidewall angle Bottom (%): 45.000000	Wavelength [nm] n unbleached k unbleached n blex	Exposure Parameters			
	365 1.7123 0.0358 1.699 405 1.6906 0.0336 1.671	Proximity Gap [um] 20.000000			
	436 1.6948 0.0227 1.657				

Simulation is:

- Saving Time and Material
 - No need to produce masks, print wafers or inspect no materials wasted
- Saving engineering resources
- Simulation supports:
- Designer
 - Development of design rules
 - Layout verification hot-spot detection
 - Layout optimisation Optical Proximity Corrections
- Process engineer
- Equipment, mask and material supplier

Cross of 10 m line width at 30µm proximity gap

Benefits

Simulation Flow

LAB simulation images

Description	Proximity
Aerial image Image of the layout in air in the gap	
Bulk image Intensity in the resist	
Concentration view Intensity image multiplied by the rate constant of the exposure reaction	

9

Proximity Image Formation

- Calculation of the **Aerial image** at arbitrary gaps is based on **Kirchhoff Scalar Diffraction** theory
 - "thin mask" >> Non-vectorial (polarization) effects
 - Rayleigh-Sommerfeld integral is solved (no need of considering light near optical axis)
 - Image calculation at arbitrary distances from mask

Models have been proven in IC manufacturing for over 20 years

- Intensity Image Modelling
- The calculation of Image intensity (aerial image / bulk image) is based on solid physics (optics) and mathematics.
- Accuracy of algorithms are proven by benchmarks with rigorous experiments.

• Optimisation of processes using intensity images reduce waste of materials and time.

Bulk Image Calculation

- Transfer Matrix Model (thin-film algorithm) considers:
 - Propagation and absorption of light in a stack of homogeneous layers of different material
 - $n(\lambda)$ and $k(\lambda)$
 - Reflection at material interface
 - Change of propagation angle at material interface
- Bleaching:
 - Change of n and k during the exposure
 - Optical properties n and k of non-exposed and exposed resist are needed
 - Exposure is modelled in multiple steps

3D Resist Modelling

Bulk Image

- Typical resist modelling is based on:
 - Dill model: Converts **Bulk image** into Photo-Active-Compound (PAC) concentration
 - Mack-4 model: Calculates the **dissolution rate** from the PAC concentration
- **3D resist development model** is based on development-rate parameter
- The **3D development front** is modeled as function of development time

3D simulation on resist

3D Resist Modelling - Example

- Resist-model parameter requires fitting experimental data:
 - Contrast Curve
 - Development Rate Monitoring
 - Resist profile

Simulation 3D Resist Structure (Layout Lab, GenlSys)

Printed Resist Structure

Layout LAB offers the Calibration module for fitting parameters to experimental data

Mack Development Model

Some Typical Mack Development Rate Parameters

Lithography

Simulation

3D resist simulation vs experiment after resist parameter calibration

Figure 4: Comparison of simulated ((a) and (c)) and experimentally observed ((b) and (d)) photoresist profiles.

from A. Erdmann: Lithography Lecture

Pattern Fidelity Issues

- Common artifacts seen after exposure and development of features are:
 - Corner rounding
 - Length shortening
 - Critical dimension shrinking/widening

Optical Proximity Correction

OPC Strategy

•Typical OPC methods in high-end lithography

Keep	nitial Layout							
Min Free	Edge Size [ur	m] 0.050000			Min Segment	Size [um]	0.100000	
Min Corner Size [um] 0.150000				Max Segment Size [um]		1000000.000000		
Bias Li	imit [um]	0.000000						
larget La	yer	OPC]			
A	tion De	ependence Param	Scenario	Con	dition (Optimize	CSE [r	im] [mi
Bias	CI	D	AnySegment	true	.			Insert
Serif	-		Corner	true				Delete
CutCorn	er -		Corner	true				
Hamme	rhead -		LineEnd	true				Up
Bar	-		AnySegment	true				
Condit	ion true							
	CD [um]	Bias	um]				_	
0.0	00000 0	.000000					Bia	15
-		Insert	Delete					

corner rounding

Biasing Example

• A simple example: patterning of 3 µm iso- and dense lines

Biasing Example

Process window analysis

3 µm iso-line on mask Process Window: Exposure Latitude 0.960 (Best Dose 3.030)

Biasing Example

- Overlap of the process window shows:
 - Impossible to print both iso-line and dense lines at Gap larger than 20 μm

μm

Biasing Example

• Biasing of pattern improves the printability of both iso-line and dense lines at gap 20

Process window when the linewidth are biased (linewidth for iso line is 2.6 μ m and linewidth for dense lines is 4 μ m)

Simulation vs Experiment

• Comparison simulation to experiment - dots

Simulation vs Experiment

• Comparison simulation to experiment - holes

×	×	×	×	×	×	X			
						×			
•	•	Ú,			•		•	•	•
×	2						۲	0	•
<u>4.8</u> 6	um 🔛	····· 4.5	8 µm				۲	۲	۲
ß	um 🔍	F 5.0	0 µm				0	0	•

OPC Assist Features

5

Sub-resolution Features

Example feature without OPC

Mask Layout at 150 μm gap

203 203

Simulation result without OPC

Threshold \pm 10% Dose variation

3D profile for negative resist

Intensity Image

Example feature with OPC

BEAMER

Thank You!

support@genisys-gmbh.com

LAB TRACER MASKER

Pro **SEM**

VIEWER

Eschenstr. 66 D-82024 Taufkirchen (Munich) GERMANY

+49-(0)89-3309197-60

Headquarters

GenISys GmbH

☐ +49-(0)89-3309197-61⊠ info@genisys-gmbh.com

USA Office

GenlSys Inc. P.O. Box 410956 San Francisco, CA 94141-0956 USA

① +1 (408) 353-3951
 ☑ usa@genisys-gmbh.com

Japan / Asia Pacific Office

GenlSys K.K. German Industry Park 1-18-2 Hakusan Midori-ku Yokohama 226-0006 JAPAN (① +81 (0)45-530-3306 (□ +81 (0)45-532-6933

 \boxtimes apsales@genisys-gmbh.com