

BEAMER

Building Bridges in BEAMER

using 3D Edge PEC

BEAMeeting EIPBN 2024

Problem Statement

Objective

- CD control in multilayer resist systems
- Requirements
 - Knowledge about the development behavior in the resist system:
 - \rightarrow Development Rate Model

OUTLINE

3D Edge PEC

- Development Rate Model
- Lateral Development
- Case 1: How to Build a Bridge
- Case 2: Lift-off Undercut
- More cases

3D Edge Scenarios

Scenario 1: high D2C* bottom layer

e.g. T-Gate ***D2C** = Dose-to-Clear Scenario 2: high D2C top layer

e.g. Dolan (shadow evaporation) technique

OUTLINE

- 3D Edge PEC
- Development Rate Model
- Lateral Development
- Case 1: How to Build a Bridge
- Case 2: Lift-off Undercut
- More cases

Development Rate Model (DRM)

• What is a DRM?

• Describes the relation between applied dose and resist development: Rate(Dose).

Development Rate Model (DRM)

• How do we get a DRM?

- Development Rates for higher doses have to be extrapolated from the given Contrast Curve.
- Knowing rates at higher doses is required as PEC might apply values higher than defined in CC

Development Rate Model (DRM)

- Which DRM is used in 3D Edge PEC?
 - Simple contrast model (Lumped Parameter Model):

•
$$r = r_0 \left(\frac{D}{D_0}\right)^{\gamma}$$
;

- Dose-to-Clear
- r_0 : rate at D_0
- γ : Contrast

OUTLINE

- 3D Edge PEC
- Development Rate Model
- Lateral Development
- Case 1: How to Build a Bridge
- Case 2: Lift-off Undercut
- More cases

Lateral Development

• Example 1 :

Regions with different removal rates.

• Example 2 :

In 3D applications regions with different rates are not separated, thus there's a huge impact!

For the **development front** calculation, a **path based** method can be applied.

- Vertical path @ figure center with r_{max} . - Horizontal path - lateral development using the rate profile $r_{lat}(x)$ obtained from dose profile.

Lateral Development Model

 t_{dev} : development time t_{vert} : time for vertical path t_{lat} : time for lateral path

$$t_{lat} = t_{dev} - t_{vert}$$

r(x): local rate r_{max} : max. rate in the middle $r_{lat}(x)$: lateral rate

$$r_{lat} = r_{max} \tan\left(asin\left(\frac{r(x)}{r_{max}}\right)\right)$$

The amount of **lateral bias** (x1 - x0) at a defined resist depth is determined by integration:

Case 1: How to Build a Dolan Bridge

Advancing the	Standard			
Proximity Effect Correction - 31	D E-Beam Edge			0 d >
				Sonfigure Quick Access
General	Mode			
3D-PEC	Threshold Model (Legacy)		Development Rate Model	
Accuracy	Contrast Curve Mode			
	Material Archive		Numeric	
Advanced	Material Database			
Comment	Base Dose [uC/cm^2]			
	300.00000			
	Critical Resist Layer	Contrast Curve		+ ~ ~
	Layer List	Dose Factor [-]	Thicknes	s [um]
	No Lat Dev List	Dose Factor [-]	0.54	I
		Select 1.000000		
	Porist Lavor Contr	act Curre		
	Laver List	ast curve	Thickness [um]	T A A V
	2(0)	Select	0.5	
				OK Cance

Case 1: Critical Layer

The critical layer that includes exact lateral development compensation can be placed anywhere in the stack.

The "critical" resist layer allows for overdose/undersize. Still some regions, e.g. contacts, can be excluded from the lat. dev. computation. -> "No Lat. Dev. List".

The "non critical" layers, e.g. undercut, are optimized for resist removal (dose-toclear from contrast curve) but do not exact CD. So lat. dev. Is discarded there.

Case 1: Export Corrected Pattern

Case 1: 3D E-beam simulation

y = 0.339 [um] z = 0.5 [um] Absorbed Energy [uC/cm²] S 0 0 500 400 0.6 IMPORT 0.5 y [um] z [um] E-Beam 3D 🕨 300 4 0 Resist 200 -0.5 0.2 100 LAB 0.5 -0.5 0 -1 0.5 -1 -0.5 0 1 x [um] x [um] BEAMeeting EIPBN 2024 17

Case 1: 3D Resist Simulation

t5-820 t5-210-001-2 Si-crystalline

BEAMeeting EIPBN 2024

Case 2: Lift-off undercut

Case 2: Lift-off Undercut

t5-820

t5-210-001-2

BEAMeeting EIPBN 2024

Case 2: Lift-off Undercut

Other Cases:

• Multilayer Resist Systems:

- Bilayer: one developer
- Bilayer: two developers
- Trilayer: one developer [1]
- Trilayer: two developers
- Trilayer: three developers

 Ref [1]: Ocola et al., "Trilayer process for T-gate and Γ-gate lithography using ternary developer and proximity effect correction superposition", J. Vac. Sci. Technol. B 40, 062605 (2022)

Thank You!

support@genisys-gmbh.com

Headquarters

GenlSys GmbH Eschenstr. 66 D-82024 Taufkirchen (Munich) GERMANY ① +49 (0)89 954 5364 0 圖 +49 (0)89 954 5364 99 ⊠ info@genisys-gmbh.com

USA Office

GenlSys Inc. P.O. Box 410956 San Francisco, CA 94141-0956 USA

D +1 (408) 353 3951
⊠ usa@genisys-gmbh.com

Japan / Asia Pacific Office

GenlSys K.K. German Industry Park 1-18-2 Hakusan Midori-ku Yokohama 226-0006 JAPAN ① +81 (45) 530 3306 圖 +81 (45) 532 6933 ⊠ apsales@genisys-gmbh.com