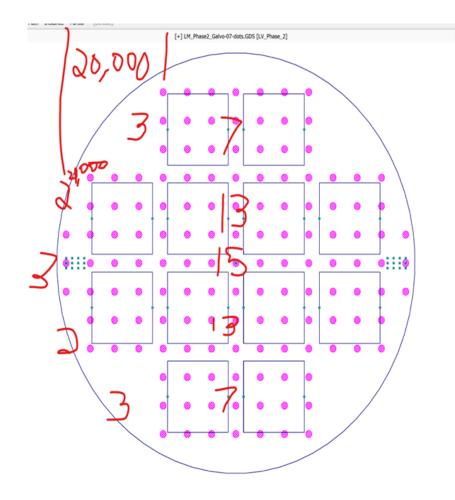
Distortion Correction using Beamer from GeniSys With Metrology on the Heidelberg DWLs

A method to match lithography across different classes of tools Roberto R. Panepucci - CNF Chad B. Moore – Lux Semiconductors



CNF – Open Access User Facility @ Cornell U

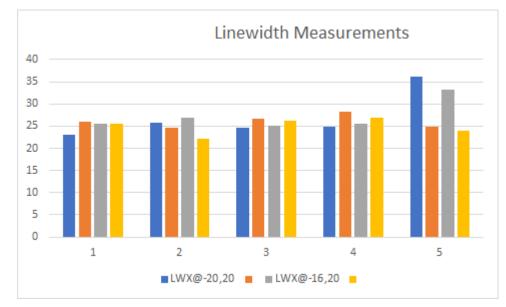
Explore the broadest range of user scenarios on the toolset – Get the most out of the tools


Distortions in patterning systems

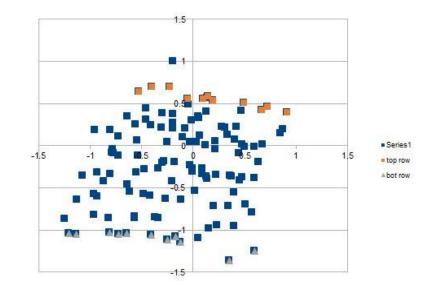
- Systems and Causes
 - Optical lenses (LCD, Steppers)
 - Electron beam columns
 - Galvo systems Deflection-based systems
 - Nanoimprint
 - Roll-to-roll
- Application and Motivation
 - New materials ...
 - ...allowed in etchers
 - ... no recipe in RIE
 - ... low ion mill rate

- Systematic -> Distortions (Reproducible)
 - Path-ray non ideality (optical, magnetic..)
 - Non-orthogonality, Magnification, Keystone
 - Histeresis
- Stochastic -> Error (Non-reproducible)
 - Noise (EMI, vibration)
 - Mechanical (e.g., backlash,etc..)
 - Interference (e.g. sensors, ..)
- Environmental -> Drift (Measurable)
 - Temperature

- Magnetic Key Technology for Overlay
- ... Operation of <u>Through The</u> Detection Mask (TTM) Alignment Material imprint Overlay Bowing **Overlay Performance** Stress Mask IP ... Chuck **High Order Distortion High Orde** Control Distortion Correctio


The Problem: Pre-patterned high-value wafers

- Pre patterned Device Layer would not match photomask
 Distortion was present
- GeniSys has Distortion Correction Module
- Heidelberg DWL metrology
- Solution -> Distort GDS to match distorted device (milestone need)


Heidelberg DWL66 Metrology

- Measure routines
- Location, Linewidth, Overlay
- Die-by-Die or Routine

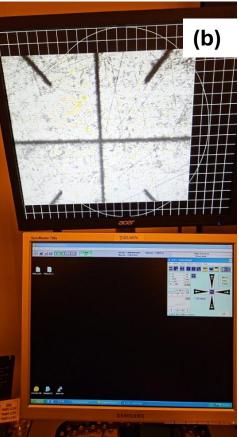
- Scatter of "as-measured" data
- Rotated data (numerical processing)

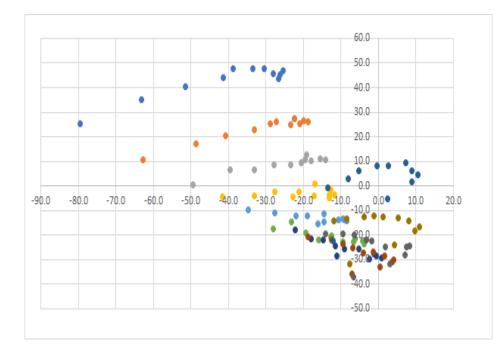
Gold Mask – Reference (DWL2000)

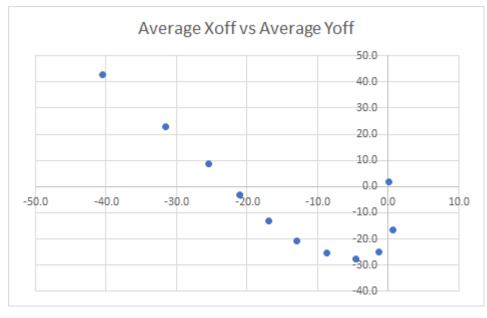
Heidelberg DWL Mark Location

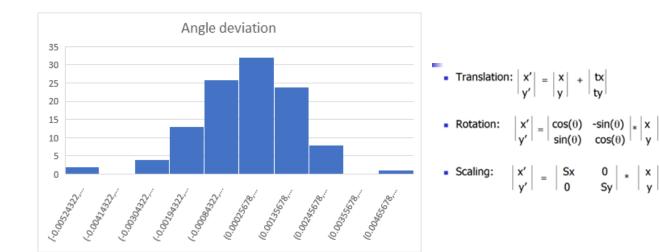
- Video system metrology
- Calibration with interferometric stage
- Dual camera system (micro and macro)
- Detect

○ Cross, Pattern, Lines

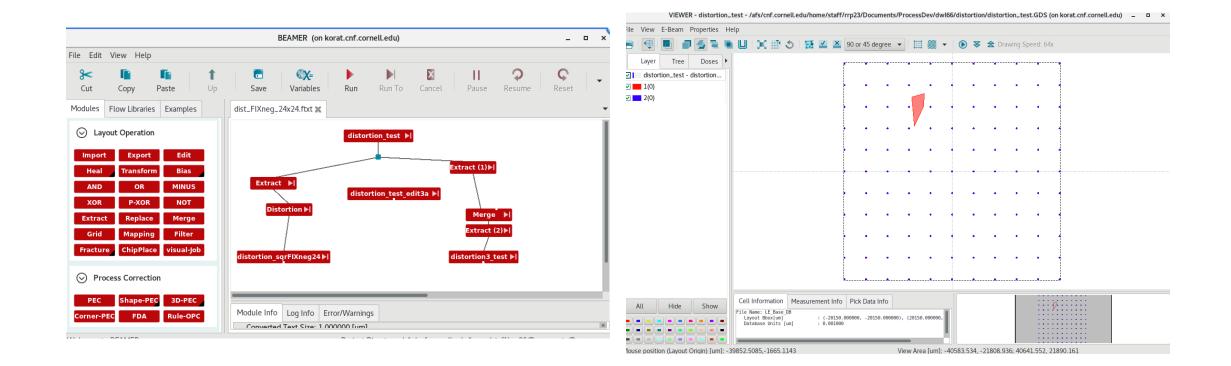

• Measure


Position, LinewidthOverlay (box-in-box)


• On these wafers, reproducibility was +/-0.5um

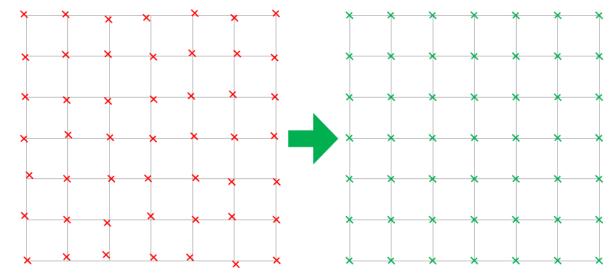


(a) lower limb measured in red box – Micro camera;
(b) Macro view of center cross and DWL66 control



Beamer – Pre-distortion of CAD

GeniSys – Distortion Correction with Beamer

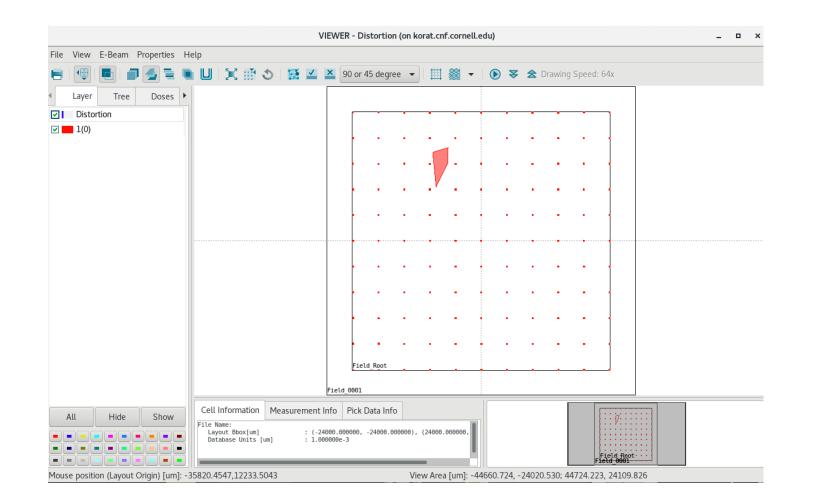

Distortion Tab

Navigation: Modules > Layout Operation > Fracture >

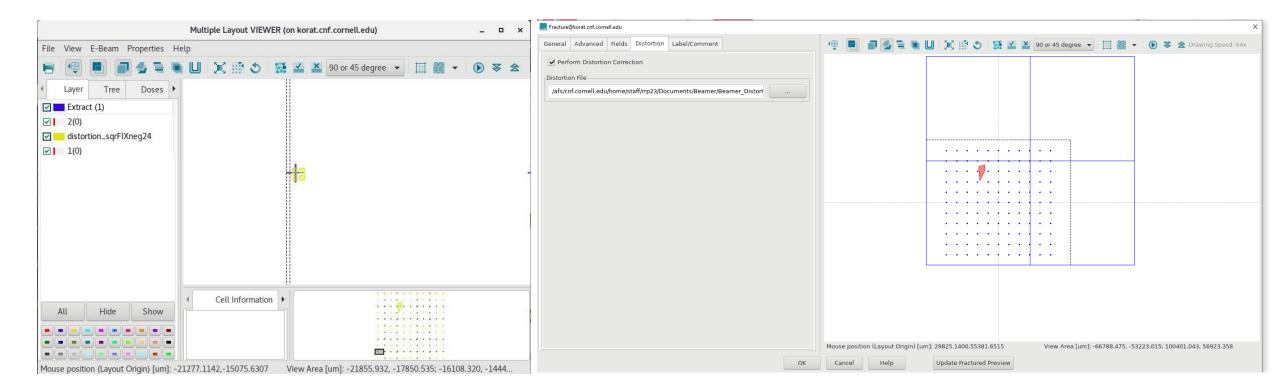
- Distortion correction will apply a position dependent correction of geometries in a pattern.
- Fracture module
 - 'Flat with Fields' option in the general tab.
 - Set the field size in the Fields tab to match your final export.
 - A map of field distortions is applied as shown above, and based on this, the pattern edges are shifted to compensate for these distortions.
 - Currently the distortion file can only be imported but not displayed/edited.
 - The distortion file uses a pre-defined format.
 - The distortion correction shifts each vertex of a polygon according to the distortion map.

racture
General Fields Multipass Distortion Label/Comment
Perform Distortion Correction
Distortion File
C:\Users\rayno\Documents\BEAMER Test Files\distortion.txt
General Fields Multipass Distortion Label/Comment
Field Size [um] X 1000.000000 Y 1000.000000
Subfield Size [um] X 0.990000 Y 9.600000
Traversal Direction Bottom Up Top Down

The Field Distortion Correction is used to correct for residual distortion errors in the deflection field.



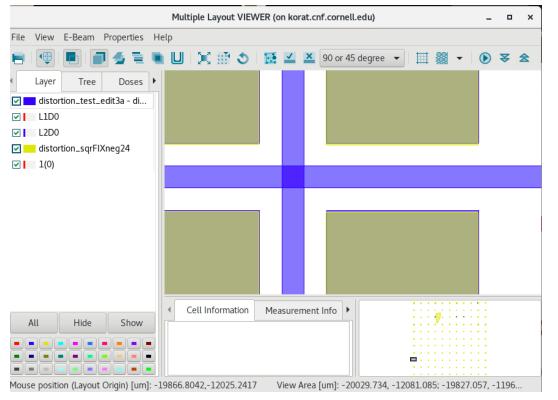
General	Advanced	Fields	Distortion	Label/Comment			
Perform Distortion Correction							
Distortion File							
/afs/cnf.cornell.edu/home/staff/rrp23/Documents/Beamer/April5/Beamer_F							


Fracturing Grid						٠V	Vrite Cor	ntrol		
Maintain Grid								Selected La	yer	Sele
Resolution [um]	0.001						\odot	*	\odot	*
Beam Step Size		1	•	0.001000	[um]		—Overl —Field	pass Mode - lap Method · Sorting - M ure Sorting ii	- Share b eanderX	etwee
Fracturing Type — O Hierarchical O	Flat 💿 Flat	with Field	5				Region D	Definition (SI	nift + left	mous
Fracturing Mode										
		,,,	al Shapes							
Symmetric Fra	icturing	Subfield I								
Symmetric Fra Trapezoids X and Y X or	icturing	Subfield I								
	ncturing	Subfield F	Fracturing							
Symmetric Fra Trapezoids X and Y X or Fracturing Angle Any Angle	ncturing	Subfield F	racturing							

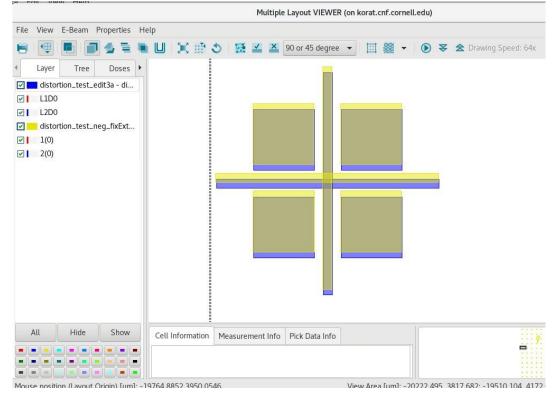
Beware of Mismatch in Field Size -> Multiple fields used to Fracture -> FAILURE!

X=48000	=ROUND(B2,0)&" "&ROUND(B15,0)					
Y=48000	=INT(B2)&" "&INT(B15)					
[MeshSize]						
X=4000	=CONCAT("(",O2,")",",")					
Y=4000						
[DistortionVectors]						
# @24000 @-20000 @-16000 @-12000 @-8000 @-4000 @0 @4000 @8	000 @12000 @16000 @20000 @-24000					
@24000 <mark>(0 0), (0 0), (0 0), (0 0), (0 0), (0 0), (0 0), (0 0), (0 0), (0 0)</mark>	, (0 0), (0 0), (0 0),					
@20000 <mark>(0 0)</mark> , (-10 17), (-9 21), (-2 25), (0 28), (7 30), (7 32), (10 33	3), (14 31), (11 28), (1 24), (-13 14), <mark>(0 0)</mark> ,					
@4000 <mark>(0 0),</mark> (-18 -4), (-12 0), (-8 -0), (-4 -2), (-2 -2), (2 -2), (5 -2),	(7 -1), (9 0), (5 0), (-4 3), <mark>(0 0),</mark>					
@0 <mark>(0 0),</mark> (-21 5), (-15 4), (-12 3), (-7 3), (-10 -5), (-1 2), (1 4),	(4 3), (7 4), (3 10), (-4 13), <mark>(0 0),</mark>					
@-24000 (0 0), (0 0), (0 0), (0 0), (0 0), (0 0), (0 0), (0 0), (0 0), (0 0)), (0 0), (0 0), (0 0),					

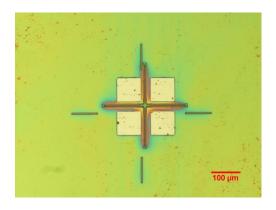
=TRANSPOSE(I51:I61)

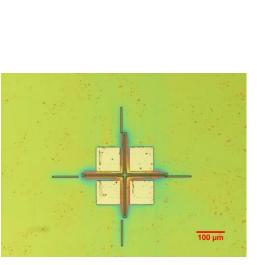

Example Distortion File

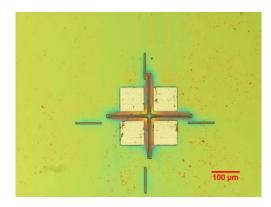
BEAMER FRACTURE DISTORTION FILE v1.0

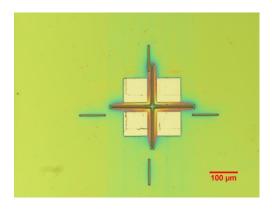

[FieldSize]

Validate with measured data Create CIF from Actual Locations


Distortion Matrix matches Measurement




Glitch in Transposing Measurements



Distortion Corrected Exposure results

100 µm

- Aligment of squares to cross field
- Crosses from measured data
- Squares from converted ideal pattern with Beamer
- Note
 - Extra limbs show problem with Distortion Matrix generation

Summary and Recommendations

- Beamer Distortion Correction applied to large distortions successfully
- Interpolation is linear
- Distortion Matrix format is text format – easily assembled
- Can create mathematical interpolations using any distortion model

- Ability to distort pure paths is highly desirable
 - \odot Had to convert to polygon
 - Preserve cell hierarchy (e.g. box-inbox)

o Import, Create, Manage

- Distortion Matrices
- \odot Interaction with tools (DWL, ProSEM)
- For "developers",

Extraction of distortion type, and
Parametrization of model distortions

Acknowledgements

• LUX

o https://www.luxsemiconductors.com

• CNF

 \circ cnf.cornell.edu/

• NSF's NNCI

o https://cnf.cornell.edu/about/nnci

• GeniSys

o https://www.genisys-gmbh.com

Heidelberg

 DWL66 @ CNF
 <u>https://www.cnfusers.cornell.edu/node/</u>39

<u>https://www.nano.upenn.edu/</u>
 <u>https://research.gatech.edu/node/19319</u>

- https://research.gatech.edu/
 - <u>https://www.nano.upenn.edu/equipment/ipg</u>
 <u>-photonics-ix200f-2/</u>

National Nanotechnology Coordinated Infrastructure